大小调整/缩放图像

2020/12/07 05:12 · python ·  · 0评论

我想拍摄一张图像并更改图像的比例,虽然它是一个numpy数组。

例如,我有一个可口可乐瓶的图像:
bottle-1

转换为一个numpy的形状数组,(528, 203, 3)我想调整其大小以表示第二个图像的大小:
bottle-2

形状为(140, 54, 3)

如何在保持原始图像的同时将图像尺寸更改为特定形状?其他答案建议将其他每行或第三行剥离,但是我想要做的基本上是像通过图像编辑器(但使用python代码)那样收缩图像。是否有任何库可以在numpy / SciPy中执行此操作?

是的,您可以安装opencv(这是用于图像处理和计算机视觉的库),然后使用该cv2.resize功能。例如使用:

import cv2
import numpy as np

img = cv2.imread('your_image.jpg')
res = cv2.resize(img, dsize=(54, 140), interpolation=cv2.INTER_CUBIC)

img因此,这里是一个包含原始图像res的numpy数组,而这是一个包含调整大小的图像的numpy数组interpolation参数是一个重要方面:有几种方法可以调整图像大小。特别是因为你缩小图像,而原图像的大小是不是调整后的图像的大小的倍数。可能的插值方案为:

  • INTER_NEAREST -最近邻插值
  • INTER_LINEAR -双线性插值(默认使用)
  • INTER_AREA-使用像素面积关系进行重采样。这可能是首选的图像抽取方法,因为它可提供无波纹的结果。但是,当图像放大时,它与INTER_NEAREST方法类似
  • INTER_CUBIC -在4x4像素邻域上的双三次插值
  • INTER_LANCZOS4 -在8x8像素邻域上进行Lanczos插值

与大多数选项一样,就每种调整大小模式而言,也没有“最佳”选项,在某些情况下,一种策略可能比另一种策略更可取。

尽管可以单独使用numpy来执行此操作,但该操作不是内置的。也就是说,您可以使用scikit-image(基于numpy构建)执行这种图像处理。

Scikit-Image重缩放文档在此处

例如,您可以对图像执行以下操作:

from skimage.transform import resize
bottle_resized = resize(bottle, (140, 54))

这将为您处理插值,抗锯齿等问题。

对于来自Google来这里的人们,他们正在寻找一种快速的方法来对numpy阵列中的图像进行下采样以用于机器学习应用程序,这是一种超快速的方法(从此处改编)。仅当输入尺寸为输出尺寸的倍数时,此方法才有效。

以下示例将采样率从128x128降采样为64x64(可以轻松更改)。

频道最后订购

# large image is shape (128, 128, 3)
# small image is shape (64, 64, 3)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((output_size, bin_size, 
                                   output_size, bin_size, 3)).max(3).max(1)

渠道第一订购

# large image is shape (3, 128, 128)
# small image is shape (3, 64, 64)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((3, output_size, bin_size, 
                                      output_size, bin_size)).max(4).max(2)

对于灰度图像,只需将更3改为1如下所示:

渠道第一订购

# large image is shape (1, 128, 128)
# small image is shape (1, 64, 64)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((1, output_size, bin_size,
                                      output_size, bin_size)).max(4).max(2)

此方法使用的是最大池化。我发现这是最快的方法。

如果有人来这里寻找一种简单的方法来在Python中缩放/调整图像大小,而无需使用其他库,这是一个非常简单的图像调整大小功能:

#simple image scaling to (nR x nC) size
def scale(im, nR, nC):
  nR0 = len(im)     # source number of rows 
  nC0 = len(im[0])  # source number of columns 
  return [[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]  
             for c in range(nC)] for r in range(nR)]

用法示例:将(30 x 30)图像调整为(100 x 200):

import matplotlib.pyplot as plt

def sqr(x):
  return x*x

def f(r, c, nR, nC):
  return 1.0 if sqr(c - nC/2) + sqr(r - nR/2) < sqr(nC/4) else 0.0

# a red circle on a canvas of size (nR x nC)
def circ(nR, nC):
  return [[ [f(r, c, nR, nC), 0, 0] 
             for c in range(nC)] for r in range(nR)]

plt.imshow(scale(circ(30, 30), 100, 200))

输出: 缩放图像

这可以缩小/缩放图像,并且可以与numpy数组一起使用。

SciPy的imresize()方法是另一种调整大小的方法,但是将从SciPy v 1.3.0开始将其删除。SciPy指的是PIL图像调整大小方法:Image.resize(size, resample=0)

size –请求的大小(以像素为单位),以2元组表示:(宽度,高度)。
重采样–可选的重采样过滤器。这可以是PIL.Image.NEAREST(使用最近的邻居),PIL.Image.BILINEAR(线性插值),PIL.Image.BICUBIC(三次样条插值)或PIL.Image.LANCZOS(高质量下采样滤波器)之一。 )。如果省略,或者图像的模式为“ 1”或“ P”,则将其设置为PIL.Image.NEAREST。

链接到这里:https :
//pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.resize

是否有任何库可以在numpy / SciPy中执行此操作

当然。您可以在没有OpenCV,scikit-image或PIL的情况下执行此操作。

图像调整大小基本上是将每个像素的坐标从原始图像映射到其调整大小的位置。

由于图像的坐标必须是整数(将其视为矩阵),因此,如果映射的坐标具有十进制值,则应插值像素值以使其接近整数位置(例如,已知最接近该位置的像素)作为最近邻插值)。

您所需要做的就是为您执行此插值的功能。SciPy有interpolate.interp2d

您可以使用它来调整numpy数组中图像的大小,例如arr,如下所示:

W, H = arr.shape[:2]
new_W, new_H = (600,300)
xrange = lambda x: np.linspace(0, 1, x)

f = interp2d(xrange(W), xrange(H), arr, kind="linear")
new_arr = f(xrange(new_W), xrange(new_H))

当然,如果您的图像是RGB,则必须对每个通道执行插值。

如果您想了解更多信息,建议您观看“调整图像大小-Computerphile”

import cv2
import numpy as np

image_read = cv2.imread('filename.jpg',0) 
original_image = np.asarray(image_read)
width , height = 452,452
resize_image = np.zeros(shape=(width,height))

for W in range(width):
    for H in range(height):
        new_width = int( W * original_image.shape[0] / width )
        new_height = int( H * original_image.shape[1] / height )
        resize_image[W][H] = original_image[new_width][new_height]

print("Resized image size : " , resize_image.shape)

cv2.imshow(resize_image)
cv2.waitKey(0)

For simple one-liner numpy solutions for basic downsampling (by 2):

smaller_img = bigger_img[::2, ::2]

And upsampling (by 2):

bigger_img = smaller_img.repeat(2, axis=0).repeat(2, axis=1)

(this asssumes HxWxC shaped image. h/t to L. Kärkkäinen in the comments above)

本文地址:http://python.askforanswer.com/daxiaodiaozheng-suofangtuxiang.html
文章标签: ,   ,   ,   ,  
版权声明:本文为原创文章,版权归 admin 所有,欢迎分享本文,转载请保留出处!

文件下载

老薛主机终身7折优惠码boke112

上一篇:
下一篇:

评论已关闭!