如何在Python中的单个表达式中合并两个词典(合并词典)?

2020/10/16 21:32 · python ·  · 0评论

我有两个Python字典,我想编写一个返回这两个字典(合并后即合并)的单个表达式。update()如果它返回结果而不是就地修改字典,则方法将是我所需要的。

>>> x = {'a': 1, 'b': 2}
>>> y = {'b': 10, 'c': 11}
>>> z = x.update(y)
>>> print(z)
None
>>> x
{'a': 1, 'b': 10, 'c': 11}

我怎样才能在最终的合并字典z,不是x

(更明确地说,dict.update()我正在寻找的最后一个胜出的冲突处理方法。)

如何在一个表达式中合并两个Python字典?

对于字典xyz变成了浅层合并的字典,其值y替换了的值x

  • 在Python 3.5或更高版本中:

    z = {**x, **y}
    
  • 在Python 2(或3.4或更低版本)中,编写一个函数:

    def merge_two_dicts(x, y):
        z = x.copy()   # start with x's keys and values
        z.update(y)    # modifies z with y's keys and values & returns None
        return z
    


    现在:

    z = merge_two_dicts(x, y)
    
  • 在Python 3.9.0a4以上(最终发布日期大约2020年10月):PEP-584这里讨论,执行,以进一步简化这一点:

    z = x | y          # NOTE: 3.9+ ONLY
    

说明

假设您有两个字典,并且想要将它们合并为新字典,而无需更改原始字典:

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}

理想的结果是获得一个z合并了值的新字典(),第二个字典的值覆盖第一个字典的值。

>>> z
{'a': 1, 'b': 3, 'c': 4}

PEP 448中提出从Python 3.5开始可用的新语法

z = {**x, **y}

而且确实是一个表达。

注意,我们也可以使用文字符号合并:

z = {**x, 'foo': 1, 'bar': 2, **y}

现在:

>>> z
{'a': 1, 'b': 3, 'foo': 1, 'bar': 2, 'c': 4}

它现在显示为在3.5发布时间表中实现,PEP 478,并且已进入Python 3.5的新功能文档。

但是,由于许多组织仍在使用Python 2,因此您可能希望以向后兼容的方式进行操作。在Python 2和Python 3.0-3.4中可用的经典Pythonic方法是分两步完成的:

z = x.copy()
z.update(y) # which returns None since it mutates z

在这两种方法中,y将排第二,其值将替换x的值,因此'b'将指向3我们的最终结果。

尚未在Python 3.5上运行,但需要一个表达式

如果您尚未使用Python 3.5,或者需要编写向后兼容的代码,并且希望在单个表达式中使用它,则最有效的方法是将其放入函数中:

def merge_two_dicts(x, y):
    """Given two dictionaries, merge them into a new dict as a shallow copy."""
    z = x.copy()
    z.update(y)
    return z

然后您有一个表达式:

z = merge_two_dicts(x, y)

您还可以制作一个函数来合并未定义数量的字典,字典的数量从零到很大:

def merge_dicts(*dict_args):
    """
    Given any number of dictionaries, shallow copy and merge into a new dict,
    precedence goes to key value pairs in latter dictionaries.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

此函数将在所有字典的Python 2和3中工作。例如教字典ag

z = merge_dicts(a, b, c, d, e, f, g) 

在键值对g的优先级高于字典af,等等。

其他答案的批判

不要使用以前接受的答案中看到的内容:

z = dict(x.items() + y.items())

在Python 2中,您在内存中为每个字典创建两个列表,在内存中创建第三个列表,其长度等于前两个字典的长度,然后丢弃所有三个列表以创建字典。在Python 3中,这将失败,因为您将两个dict_items对象而不是两个列表在一起-

>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict_items' and 'dict_items'

并且您必须将它们明确创建为列表,例如z = dict(list(x.items()) + list(y.items()))这浪费了资源和计算能力。

类似地,当值是不可散列的对象(例如列表)时items()在Python 3(viewitems()在Python 2.7中)进行联合也将失败。即使您的值是可哈希的,由于集合在语义上是无序的,因此关于优先级的行为是不确定的。所以不要这样做:

>>> c = dict(a.items() | b.items())

此示例演示了值不可散列时会发生的情况:

>>> x = {'a': []}
>>> y = {'b': []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

这是一个示例,其中y应该优先,但是由于集合的任意顺序,保留了x的值:

>>> x = {'a': 2}
>>> y = {'a': 1}
>>> dict(x.items() | y.items())
{'a': 2}

您不应该使用的另一种技巧:

z = dict(x, **y)

这使用了dict构造函数,并且非常快且内存效率高(甚至比我们的两步过程还高),但是除非您确切地知道这里发生了什么(也就是说,第二个字典作为关键字参数传递给字典)构造函数),它很难阅读,不是预期的用法,因此不是Pythonic。

这是在django修复的用法示例

字典旨在采用可散列的键(例如,frozenset或元组),但是当键不是字符串时此方法在Python 3中失败。

>>> c = dict(a, **b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings

邮件列表中,该语言的创建者Guido van Rossum写道:

我宣布dict({},** {1:3})是非法的,因为这毕竟是对**机制的滥用。

显然dict(x,** y)被“调用x.update(y)并返回x”的“酷砍”。我个人觉得它比酷更卑鄙。

我的理解(以及对语言创建者的理解)的预期用途dict(**y)是为了创建可读性目的而创建字典,例如:

dict(a=1, b=10, c=11)

代替

{'a': 1, 'b': 10, 'c': 11}

对评论的回应

尽管Guido说了什么dict(x, **y),但符合dict规范,顺便说一句。它仅适用于Python 2和3。事实上,这仅适用于字符串键,这是关键字参数如何工作的直接结果,而不是字典的缩写。在此位置使用**运算符也不会滥用该机制,实际上**的设计目的恰恰是将字典作为关键字传递。

同样,当键为非字符串时,它不适用于3。隐式调用协定是名称空间采用普通字典,而用户只能传递字符串形式的关键字参数。所有其他可调用对象都强制执行了它。dict在Python 2中破坏了这种一致性:

>>> foo(**{('a', 'b'): None})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{('a', 'b'): None})
{('a', 'b'): None}

考虑到其他Python实现(Pypy,Jython,IronPython),这种不一致是很糟糕的。因此,它在Python 3中已得到修复,因为这种用法可能是一个重大更改。

我向您指出,故意编写仅适用于一种语言版本或仅在特定的任意约束下有效的代码是恶意的无能。

更多评论:

dict(x.items() + y.items()) 仍然是Python 2最具可读性的解决方案。可读性至关重要。

我的回答:merge_two_dicts(x, y)如果我们实际上担心可读性,实际上对我来说似乎更加清晰。而且它不向前兼容,因为Python 2越来越不推荐使用。

{**x, **y}似乎不处理嵌套字典。嵌套键的内容只是被覆盖,没有被合并,而最终我被这些没有递归合并的答案所烧死,我很惊讶没有人提到它。在我对“合并”一词的解释中,这些答案描述的是“将一个词典与另一个词典更新”,而不是合并。

是。我必须回头再问这个问题,它要求两个字典进行浅层合并,第一个字典的值由第二个字典覆盖-在一个表达式中。

假设有两个字典,一个字典可能会将它们递归合并到一个函数中,但是您应注意不要从任何一个源修改字典,而避免这种情况的最可靠方法是在分配值时进行复制。由于键必须是可散列的,因此通常是不可变的,因此复制它们毫无意义:

from copy import deepcopy

def dict_of_dicts_merge(x, y):
    z = {}
    overlapping_keys = x.keys() & y.keys()
    for key in overlapping_keys:
        z[key] = dict_of_dicts_merge(x[key], y[key])
    for key in x.keys() - overlapping_keys:
        z[key] = deepcopy(x[key])
    for key in y.keys() - overlapping_keys:
        z[key] = deepcopy(y[key])
    return z

用法:

>>> x = {'a':{1:{}}, 'b': {2:{}}}
>>> y = {'b':{10:{}}, 'c': {11:{}}}
>>> dict_of_dicts_merge(x, y)
{'b': {2: {}, 10: {}}, 'a': {1: {}}, 'c': {11: {}}}

提出其他价值类型的偶发性问题远远超出了这个问题的范围,因此,我将为您回答有关“词典合并词典”的规范问题

性能较差但临时性正确

这些方法的性能较差,但是它们将提供正确的行为。他们将少得多比高性能copyupdate或新的拆包,因为他们通过在更高的抽象水平的每个键-值对迭代,但他们做的尊重优先顺序(后者字典具有优先权)

您还可以在dict理解内手动链接字典

{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7

或在python 2.6中(也许早在引入生成器表达式时就在2.4中):

dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2

itertools.chain 将以正确的顺序在键值对上链接迭代器:

from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2

绩效分析

我将仅对已知行为正确的用法进行性能分析。(自包含的,因此您可以复制并粘贴自己。)

from timeit import repeat
from itertools import chain

x = dict.fromkeys('abcdefg')
y = dict.fromkeys('efghijk')

def merge_two_dicts(x, y):
    z = x.copy()
    z.update(y)
    return z

min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))

在Python 3.8.1中,NixOS:

>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux

词典资源

就您而言,您可以做的是:

z = dict(list(x.items()) + list(y.items()))

可以根据需要将最终的dict放入中z,并使key的值b被第二(y)dict的值正确覆盖

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{'a': 1, 'c': 11, 'b': 10}

如果使用Python 2,甚至可以删除list()调用。创建z

>>> z = dict(x.items() + y.items())
>>> z
{'a': 1, 'c': 11, 'b': 10}

如果您使用Python版本3.9.0a4或更高版本,则可以直接使用:

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = x | y
print(z)
{'a': 1, 'c': 11, 'b': 10}

替代:

z = x.copy()
z.update(y)

另一个更简洁的选择:

z = dict(x, **y)

注意:这已经成为一个流行的答案,但是必须指出的是,如果y有任何非字符串键,那么它实际上是对CPython实现细节的滥用,并且在Python 3中不起作用,或在PyPy,IronPython或Jython中。另外,Guido也不是粉丝因此,我不建议将此技术用于前向兼容或交叉实现的可移植代码,这实际上意味着应完全避免使用它。

这可能不是一个流行的答案,但是您几乎可以肯定不想这样做。如果要合并的副本,请使用copy(或deepcopy,取决于您想要的内容),然后进行更新。与使用.items()+ .items()进行单行创建相比,两行代码更具可读性-更具Python风格。显式胜于隐式。

此外,当您使用.items()(Python 3.0之前的版本)时,您正在创建一个新列表,其中包含字典中的项目。如果您的字典很大,那将是很多开销(创建合并字典后将立即丢弃两个大列表)。update()可以更高效地工作,因为它可以逐项执行第二个字典。

时间方面

>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()\ntemp.update(y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027

IMO出于可读性考虑,前两者之间的微小速度下降是值得的。此外,仅在Python 2.3中添加了用于字典创建的关键字参数,而copy()和update()将在旧版本中使用。

在后续回答中,您询问了这两种选择的相对性能:

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

至少在我的机器上(运行Python 2.5.2的相当普通的x86_64),替代z2方法不仅更短,更简单,而且显着更快。您可以使用timeitPython随附模块自行验证。

示例1:相同的字典将20个连续的整数映射到自身:

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

z2胜出率约为3.5。不同的词典似乎会产生完全不同的结果,但是z2似乎总是遥遥领先。(如果同一测试的结果不一致,请尝试传递-r大于默认值3的数字。)

示例2:非重叠字典将252个短字符串映射为整数,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2 赢了大约10倍。这是我书中相当大的胜利!

比较z1完这两个项目后,我想知道的不良表现是否可归因于构建两个项目列表的开销,这反过来又使我想知道这种变化是否会更好:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

一些快速测试,例如

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

我得出的结论是,z3它的速度要比速度快z1,但不及速度z2绝对不值得所有额外的输入。

讨论中仍然缺少一些重要的内容,这是将这些替代方法与合并两个列表的“明显”方法的性能比较:使用update方法。为了使事物与表达式保持一致,它们都不修改x或y,我将制作x的副本,而不是就地对其进行修改,如下所示:

z0 = dict(x)
z0.update(y)

典型结果:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

换句话说,z0并且z2似乎具有基本相同的性能。您认为这可能是巧合吗?我不....

实际上,我什至宣称纯粹的Python代码不可能做到比这更好。而且,如果您可以在C扩展模块中做得更好,我想Python人士可能会对将您的代码(或方法的变体)合并到Python核心中很感兴趣。Pythondict在很多地方都使用过;优化运营非常重要。

您也可以这样写

z0 = x.copy()
z0.update(y)

就像Tony一样,但是(并不奇怪)表示法上的差异对性能没有任何可测量的影响。使用您认为合适的任何一种。当然,他指出两语句版本更容易理解是绝对正确的。

在Python 3.0及更高版本中,您可以使用collections.ChainMap将多个字典或其他映射组合在一起的方式来创建一个可更新的视图:

>>> from collections import ChainMap
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = dict(ChainMap({}, y, x))
>>> for k, v in z.items():
        print(k, '-->', v)

a --> 1
b --> 10
c --> 11

Python 3.5和更高版本的更新:可以使用PEP 448扩展词典打包和拆包。快速简便:

>>> x = {'a':1, 'b': 2}
>>> y = y = {'b':10, 'c': 11}
>>> {**x, **y}
{'a': 1, 'b': 10, 'c': 11}

我想要类似的东西,但是能够指定如何合并重复键上的值,所以我破解了这个(但并未对其进行大量测试)。显然,这不是单个表达式,而是单个函数调用。

def merge(d1, d2, merge_fn=lambda x,y:y):
    """
    Merges two dictionaries, non-destructively, combining 
    values on duplicate keys as defined by the optional merge
    function.  The default behavior replaces the values in d1
    with corresponding values in d2.  (There is no other generally
    applicable merge strategy, but often you'll have homogeneous 
    types in your dicts, so specifying a merge technique can be 
    valuable.)

    Examples:

    >>> d1
    {'a': 1, 'c': 3, 'b': 2}
    >>> merge(d1, d1)
    {'a': 1, 'c': 3, 'b': 2}
    >>> merge(d1, d1, lambda x,y: x+y)
    {'a': 2, 'c': 6, 'b': 4}

    """
    result = dict(d1)
    for k,v in d2.iteritems():
        if k in result:
            result[k] = merge_fn(result[k], v)
        else:
            result[k] = v
    return result

递归/深度更新字典

def deepupdate(original, update):
    """
    Recursively update a dict.
    Subdict's won't be overwritten but also updated.
    """
    for key, value in original.iteritems(): 
        if key not in update:
            update[key] = value
        elif isinstance(value, dict):
            deepupdate(value, update[key]) 
    return update

示范:

pluto_original = {
    'name': 'Pluto',
    'details': {
        'tail': True,
        'color': 'orange'
    }
}

pluto_update = {
    'name': 'Pluutoo',
    'details': {
        'color': 'blue'
    }
}

print deepupdate(pluto_original, pluto_update)

输出:

{
    'name': 'Pluutoo',
    'details': {
        'color': 'blue',
        'tail': True
    }
}

感谢rednaw的编辑。

我不使用副本时可能想到的最佳版本是:

from itertools import chain
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
dict(chain(x.iteritems(), y.iteritems()))

至少在CPython上,它比快,dict(x.items() + y.items())但没有快n = copy(a); n.update(b)如果更改iteritems()items()则此版本在Python 3中也可以使用,这是2to3工具自动完成的。

我个人最喜欢这个版本,因为它以一种功能语法很好地描述了我想要的内容。唯一的小问题是,来自y的值优先于来自x的值并不能完全清楚,但是我不认为很难弄清楚。

Python 3.5(PEP 448)允许使用更好的语法选项:

x = {'a': 1, 'b': 1}
y = {'a': 2, 'c': 2}
final = {**x, **y} 
final
# {'a': 2, 'b': 1, 'c': 2}

甚至

final = {'a': 1, 'b': 1, **x, **y}

在Python 3.9中,您还可以使用| 和| =以及下面来自PEP 584的示例

d = {'spam': 1, 'eggs': 2, 'cheese': 3}
e = {'cheese': 'cheddar', 'aardvark': 'Ethel'}
d | e
# {'spam': 1, 'eggs': 2, 'cheese': 'cheddar', 'aardvark': 'Ethel'}
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z

对于两个字典中都有键的项目,您可以通过将最后一个放在输出中来控制哪一个最终出现在输出中。

虽然已经多次回答了该问题,但尚未列出此问题的简单解决方案。

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z4 = {}
z4.update(x)
z4.update(y)

它与上面提到的z0和邪恶z2一样快,但易于理解和更改。

def dict_merge(a, b):
  c = a.copy()
  c.update(b)
  return c

new = dict_merge(old, extras)

在这些阴暗而可疑的答案中,这个光辉的例子是在Python中合并字典的唯一且唯一的好方法,这是独裁者终身支持的Guido van Rossum本人!有人提出了一半的建议,但没有将其放在函数中。

print dict_merge(
      {'color':'red', 'model':'Mini'},
      {'model':'Ferrari', 'owner':'Carl'})

给出:

{'color': 'red', 'owner': 'Carl', 'model': 'Ferrari'}

如果您认为lambda是邪恶的,那么请继续阅读。根据要求,您可以使用一个表达式编写快速而高效的内存解决方案:

x = {'a':1, 'b':2}
y = {'b':10, 'c':11}
z = (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(x, y)
print z
{'a': 1, 'c': 11, 'b': 10}
print x
{'a': 1, 'b': 2}

如上所述,使用两行或编写函数可能是更好的方法。

是pythonic。使用理解

z={i:d[i] for d in [x,y] for i in d}

>>> print z
{'a': 1, 'c': 11, 'b': 10}

在python3中,该items方法不再返回list,而是返回一个view,其作用类似于set。在这种情况下,您将需要使用set联合,因为与的连接+将不起作用:

dict(x.items() | y.items())

对于2.7版中的类似python3的行为,该viewitems方法应代替items

dict(x.viewitems() | y.viewitems())

无论如何,我还是更喜欢这种表示法,因为将其视为集合联合操作而不是串联(如标题所示)似乎更为自然。

编辑:

对于python 3还有几点。首先,请注意,dict(x, **y)除非输入的键y是字符串,否则该技巧在python 3中将不起作用

而且,Raymond Hettinger的Chainmap答案非常优雅,因为它可以将任意数量的dicts作为参数,但是从文档中看它似乎依次遍历了每次查找的所有dicts列表:

查找顺序搜索基础映射,直到找到密钥为止。

如果您的应用程序中有很多查找,这可能会减慢您的速度:

In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop

因此,查找速度要慢一个数量级。我是Chainmap的粉丝,但在可能有很多查找的地方看起来不太实用。

使用itertools的简单解决方案,该命令可以保留顺序(后述优先)

# py2
from itertools import chain, imap
merge = lambda *args: dict(chain.from_iterable(imap(dict.iteritems, args)))

# py3
from itertools import chain
merge = lambda *args: dict(chain.from_iterable(map(dict.items, args)))

它的用法是:

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> merge(x, y)
{'a': 1, 'b': 10, 'c': 11}

>>> z = {'c': 3, 'd': 4}
>>> merge(x, y, z)
{'a': 1, 'b': 10, 'c': 3, 'd': 4}

滥用导致马修回答的单一表达解决方案

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = (lambda f=x.copy(): (f.update(y), f)[1])()
>>> z
{'a': 1, 'c': 11, 'b': 10}

你说你想要一个表情,所以我滥用了 lambda了绑定一个名称的方法,并使用元组重写了lambda的一个表达式的限制。随时畏缩。

如果您不关心复制它,当然也可以这样做:

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = (x.update(y), x)[1]
>>> z
{'a': 1, 'b': 10, 'c': 11}

两本字典

def union2(dict1, dict2):
    return dict(list(dict1.items()) + list(dict2.items()))

n词典

def union(*dicts):
    return dict(itertools.chain.from_iterable(dct.items() for dct in dicts))

sum性能不佳。参见https://mathieularose.com/how-not-to-flatten-a-list-of-lists-in-python/

即使答案对这个肤浅的人都有好处字典而言,但此处定义的方法实际上都没有进行深表字典合并。

示例如下:

a = { 'one': { 'depth_2': True }, 'two': True }
b = { 'one': { 'extra': False } }
print dict(a.items() + b.items())

人们会期望这样的结果:

{ 'one': { 'extra': False', 'depth_2': True }, 'two': True }

相反,我们得到以下信息:

{'two': True, 'one': {'extra': False}}

如果“ one”条目确实是合并的,则其字典中的项目应具有“ depth_2”和“ extra”作为条目。

也使用链,不起作用:

from itertools import chain
print dict(chain(a.iteritems(), b.iteritems()))

结果是:

{'two': True, 'one': {'extra': False}}

rcwesick进行的深度合并也产生相同的结果。

是的,可以合并示例字典,但是它们都不是合并的通用机制。一旦编写了可以真正合并的方法,我将在以后进行更新。

(仅适用于Python2.7 *;对于Python3 *有更简单的解决方案。)

如果您不反对导入标准库模块,则可以执行

from functools import reduce

def merge_dicts(*dicts):
    return reduce(lambda a, d: a.update(d) or a, dicts, {})

由于总是返回成功,所以中or alambda是必需的。)dict.updateNone

如果您不介意变异x

x.update(y) or x

简单,可读,高效。知道 update()总是会返回None,这是一个错误的值。因此,上述表达式x在更新后将始终等于

标准库中的大多数变异方法(如.update())都是None按约定返回的,因此这种模式也适用于这些方法。但是,如果您使用的是dict子类或其他不遵循此约定的方法,则or可能会返回其左操作数,这可能不是您想要的。取而代之的是,您可以使用元组显示和索引,无论第一个元素的计算结果如何(不管它多么漂亮),它都可以工作:

(x.update(y), x)[-1]

如果您还没有x变量,则可以lambda不使用赋值语句而使用本地变量这相当于lambda用作let表达式,这是功能语言中的一种常用技术,但可能不是Python语言。

(lambda x: x.update(y) or x)({'a': 1, 'b': 2})

尽管与下面使用新的walrus运算符(仅适用于Python 3.8+)没有什么不同:

(x := {'a': 1, 'b': 2}).update(y) or x

如果您确实想要副本,则PEP 584样式x | y是3.9+上最Pythonic的样式。如果必须支持旧版本,则PEP 448样式{**x, **y}最适合3.5及更高版本但是,如果在您的Python版本(甚至更旧的版本)中不可用,则let模式也可以在这里使用。

(lambda z: z.update(y) or z)(x.copy())

(当然,这等效于(z := x.copy()).update(y) or z,但是如果您的Python版本足够新,则可以使用PEP 448样式。)

借鉴这里和其他地方的想法,我已经理解了一个函数:

def merge(*dicts, **kv): 
      return { k:v for d in list(dicts) + [kv] for k,v in d.items() }

用法(在python 3中测试):

assert (merge({1:11,'a':'aaa'},{1:99, 'b':'bbb'},foo='bar')==\
    {1: 99, 'foo': 'bar', 'b': 'bbb', 'a': 'aaa'})

assert (merge(foo='bar')=={'foo': 'bar'})

assert (merge({1:11},{1:99},foo='bar',baz='quux')==\
    {1: 99, 'foo': 'bar', 'baz':'quux'})

assert (merge({1:11},{1:99})=={1: 99})

您可以改用lambda。

到目前为止,我列出的解决方案存在的问题是,在合并的字典中,键“ b”的值是10,但按照我的想法,应该是12。鉴于此,我提出以下内容:

import timeit

n=100000
su = """
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
"""

def timeMerge(f,su,niter):
    print "{:4f} sec for: {:30s}".format(timeit.Timer(f,setup=su).timeit(n),f)

timeMerge("dict(x, **y)",su,n)
timeMerge("x.update(y)",su,n)
timeMerge("dict(x.items() + y.items())",su,n)
timeMerge("for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k] ",su,n)

#confirm for loop adds b entries together
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k]
print "confirm b elements are added:",x

结果:

0.049465 sec for: dict(x, **y)
0.033729 sec for: x.update(y)                   
0.150380 sec for: dict(x.items() + y.items())   
0.083120 sec for: for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k]

confirm b elements are added: {'a': 1, 'c': 11, 'b': 12}

真傻,.update什么也没返回。

我只是使用一个简单的辅助函数来解决问题:

def merge(dict1,*dicts):
    for dict2 in dicts:
        dict1.update(dict2)
    return dict1

例子:

merge(dict1,dict2)
merge(dict1,dict2,dict3)
merge(dict1,dict2,dict3,dict4)
merge({},dict1,dict2)  # this one returns a new copy
from collections import Counter
dict1 = {'a':1, 'b': 2}
dict2 = {'b':10, 'c': 11}
result = dict(Counter(dict1) + Counter(dict2))

这应该可以解决您的问题。

这可以通过单个dict理解来完成:

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> { key: y[key] if key in y else x[key]
      for key in set(x) + set(y)
    }

在我看来,“单个表达式”部分的最佳答案是因为不需要额外的功能,而且它很简短。

由于PEP 572:Assignment Expressions,Python 3.8发行版(计划于2019年10月20日将提供一个新选项新的赋值表达式运算符使您可以分配和的结果,并仍然使用它来调用,从而使组合的代码成为单个表达式,而不是两个语句,从而更改::=copyupdate

newdict = dict1.copy()
newdict.update(dict2)

至:

(newdict := dict1.copy()).update(dict2)

同时在各个方面都表现相同。如果还必须返回结果dict(您要求返回的表达式dict;上面创建并分配给newdict,但没有返回,因此您不能使用它将参数直接传递给la myfunc((newdict := dict1.copy()).update(dict2)))。 ,然后将其添加or newdict到末尾(因为updatereturnsNone是虚假的,因此它将求值并newdict作为表达式的结果返回):

(newdict := dict1.copy()).update(dict2) or newdict

重要警告:通常,我不建议采用以下方法:

newdict = {**dict1, **dict2}

拆包方法更清晰(对于首先了解广义拆包的任何人,您都应该这样做),根本不需要名称(因此,构造一个立即传递给a的临时文件时,它更加简洁。函数或包含在list/tuple文字等中),并且几乎肯定可以更快,因为(在CPython上)大致等同于:

newdict = {}
newdict.update(dict1)
newdict.update(dict2)

但使用dict特定的API在C层完成,因此不涉及动态方法查找/绑定或函数调用分派开销(其中(newdict := dict1.copy()).update(dict2)情况下,行为不可避免地与原始的两层相同,在不连续的步骤中通过动态查找执行工作/绑定/方法的调用。

它也更可扩展,因为合并三个dicts是显而易见的:

 newdict = {**dict1, **dict2, **dict3}

使用赋值表达式不会像这样缩放的地方;您能得到的最接近的是:

 (newdict := dict1.copy()).update(dict2), newdict.update(dict3)

或没有Nones的临时元组,但对每个None结果进行真实性测试

 (newdict := dict1.copy()).update(dict2) or newdict.update(dict3)

这两种方法显然都难看得多,并且还存在效率低下的情况(可能是因为浪费tupleNones的临时值而导致的逗号分隔,或者是对每个updateNone返回的收益率进行了无意义的真实性测试or)。

赋值表达式方法的唯一真正优势在于:

  1. 您有需要同时处理sets和dicts的通用代码(它们都支持copyupdate,因此该代码大致可以按您期望的那样工作)
  2. 您希望接收任意类似dict的对象,而不仅仅是dict自身,并且必须保留左侧的类型和语义(而不是以简单的结尾dict)。虽然myspecialdict({**speciala, **specialb})可能会起作用,但它会涉及一个额外的临时操作dict,并且如果myspecialdict具有普通的dict无法保留的功能(例如,常规dicts现在会根据键的首次出现保留顺序,而根据键的最后出现保留值;您可能想要一个根据最后一个保留订单键的外观,因此更新值也会将其移到末尾),那么语义将是错误的。由于赋值表达式版本使用命名的方法(可能会重载以使其正常运行),因此它根本不会创建一个dict根本(除非dict1已经是dict),保留原始类型(以及原始类型的语义),同时避免任何临时性。
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> x, z = dict(x), x.update(y) or x
>>> x
{'a': 1, 'b': 2}
>>> y
{'c': 11, 'b': 10}
>>> z
{'a': 1, 'c': 11, 'b': 10}
本文地址:http://python.askforanswer.com/ruhezaipythonzhongdedangebiaodashizhonghebinglianggecidianhebingcidian.html
文章标签: ,   ,  
版权声明:本文为原创文章,版权归 admin 所有,欢迎分享本文,转载请保留出处!

文件下载

老薛主机终身7折优惠码boke112

上一篇:
下一篇:

评论已关闭!